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In this paper we describe algorithms for the numerical computation of Fourier
transforms of tensor fields on the two-sph&e These algorithms reduce the compu-
tation of an expansion on tensor spherical harmonics to expansions in scalar spherical
harmonics, and hence can take advantage of recent improvements in the efficiency
of computation of scalar spherical harmonic transforms.2000 Academic Press
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1. INTRODUCTION

The calculation of Fourier expansions for vector fields and, more generally, tensor fie
on the two-sphere has been identified as an important computational problem in areas
as fluid dynamics [5] and global circulation modeling [18]. Other applications include tt
analysis of cosmic microwave background radiation [22] and models of stress propaga
through the earth [6].

In this paper we show how the computation of expansions in tensor spherical harmo
may be reduced to a small number of scalar spherical harmonic transforms. Over the
20 years a large body of work has grown, addressing the problem of efficient and ste
computation of scalar spherical harmonic transforms [1, 3, 9, 12, 15, 16]. Our reductior
the tensor harmonic transform to scalar harmonic transforms allows this work to be app
to a new set of problems.

Our results generalize a well-known relationship between vector and scalar spher
harmonics (see, e.g., [13]) to the case of tensor spherical harmonics. This relation was |
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for analysis of shallow water models by Temperton [19] to reduce the computation of vec
harmonics to that of scalar harmonics. Thus, our work can be considered a generalizz
of Temperton’su-v approach to phenomena that are described by tensor fields.

To verify that our results give a practical method of computing tensor harmonic exp:
sions, we implemented the algorithms and investigated their numerical accuracy experir
tally. In the reduction to spherical harmonics some issues of numerical stability do ar
and these are examined. The reduction to spherical harmonic transforms is the main y
of this paper, and in the subsequent computation of the transforms, any accurate rot
for computing the scalar harmonic transform can be used. For convenience we cho
method based on the so-called “semi-naive” algorithm [2, 9], a technique which compL
the necessary discrete Legendre transforms in the frequency domain.

The organization of the paper is as follows. We start in Section 2 with a brief overvie
of the theory of vector and scalar harmonics. In Section 3 we discuss the tensor sphe
harmonics introduced by Newman and Penrose [14] and develop the properties ne
to relate these to scalar spherical harmonics. These tensor harmonics are also knov
monopole harmonics [20, 21] and are the natural choice for the expansion of tensor fi
on the sphere. In Section 4 we develop a sampling theory for tensor fields on the sphe
both the band-limited, and non-band-limited settings. In Section 5 we combine the samp
and tensor harmonic results to get explicit algorithms for computing the expansion ¢
finitely sampled tensor field in terms of tensor harmonics. We present our numerical res
in Section 6 and conclude in Section 7.

2. HARMONIC ANALYSIS ON THE TWO-DIMENSIONAL SPHERE

Since the scalar spherical transform will play a pivotal role in our development of tens
spherical transforms, we first provide a brief review of scalar spherical harmonics.
emphasize their relation to the Laplacian operator and rotation invariance, as these wi
the defining properties that we generalize for defining tensor harmonics.

Rotationally invariant differential operators occur throughout the physical sciences
is a well-known fact that any such operator may be expressed as a sum of powers o
Laplacian, here denoted &s In coordinatesA is defined by

32 3 1 92
A=—(—5+cotd—+ ———— |, 1
(392+ 26 * sirfo 8(,02) @

whered is the colatitude, and is the azimuthal coordinate (cf. Fig. 1).

0w
¢ 0<odp<2n

FIG. 1. Colatitude and azimuthal coordinates.
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The spherical harmonics are an orthogonal system of functions on the two-dimensic
sphere that diagonalize any rotationally invariant differential operator. This accounts
their ubiquity in problems involving spherical symmetry. In terms of the Laplacian, tr
spherical harmonics are defined up to a scalar multiple by the properties

19Y
AYim =10 +1)Ym and i—a—'m = MY )
%
These conditions imply thatandm are integers withm| < 1.

Mathematicians and physicists use a number of different conventions for the norn
ization of the spherical harmonics. We normalize things so that the expressivg, fior
coordinates becomes

Yim(0, @) = Pim(cosd)e™, (3)
wherePR, is the associated Legendre function defined by

1 2\m/2 d+m 2 |
F’Im(x)=m(1—x) W(X -1, (4)
With this normalization, the spherical harmonics satisfy the additional symmetry unc

complex conjugationYy, = Y|, _m, and have_2-norm

T 47 (I +m)!
Yimll3 = Yim(6, )| sinf dp d§ = : . 5
Yimll2 /O /O Yim(€, )| sin6 dg A+1 (—m) 5)
The spherical harmonics are orthogonal with respect to the inner product
T 27
(f,h):// (0, 9)h(@, @) sind dy da. (6)
0 JO

Using this inner product, any square-integrable function on the sphere may be expande
the spherical harmonic basis. The formula for the expansion is

F=3" > MmlZ2fd.m) - Yim, @)

I Imi<l

where the sum converges in the mean, and the coefficfe{htm) are defined byf (I,my=
{(f,Yim). The functionf(l, m) is called thescalar spherical harmonic transform of, &ind

as the formulae (3) and (6) for spherical harmonics and inner products show, it may
computed using a Fourier transform on the azimuthal variatfigllowed by integration
over the colatitudé.

2.1. Vector Spherical Harmonics

So far we have only considered the expansion of a complex scalar function on the spl
in terms of an orthogonal basis of scalar functions, the spherical harmonics. This basis
determined, up to normalization constants, by its properties under rotations of the spl
(cf. (2)) and a choice of a distinguished point (and hence an axis) on the sphere, the n
pole.
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There is an analogous expansion for vector fields on the sphere. We shall define an i
product on the space of such vector fields and choose a basis for the resulting Hilbert sy
thevector spherical harmoni¢based on a set of specified properties under rotation, and
this way generalize the construction of the scalar spherical harmonics. Consequently, ir
same way that scalar spherical harmonics are used in spectral method approaches for n
ical solution of scalar PDEs or data analysis of scalar data on the sphere, the vector sphe
harmonics may be used effectively in cases where the data consist of vector fields or
sphere. Typical examples that arise in practice are electromagnetic fields or wind velo

We start our analysis by noting that we need only consider tangential vector fields on
sphere. If we consider the sphere as embedded in 3-space, thenitis natural to view any v
field as the direct sum of a purely radial field and an orthogonal tangential field. The pur
radial vector fields transform under rotations in exactly the same way as scalar fields, an
the appropriate basis for the subspace of purely radial vector fields consists of the fields o
formYim€& , wheres is the radial vector field of unit vectors. Hence, radial vector fields ma
be treated using the methods developed for scalar spherical harmonics. The compleme
space of vector fields, the tangential vector fields, requires a separate treatment.

Any tangential vector field on the sphere can be expressed, except at the poles, in t
of the usual unit vector fieldg, ande, which are generated by polar coordinaiése)
[18]. I.e., any real tangential vector fieldmay be written as

V=1& + U(pegas

wherevy andv,, are real-valued functions defined Shexcept at the poles. For our purposes
it is most convenient, though not essential, to work with complex vector fields, in whi
case the functionsy andv, are complex-valued. Given two tangential vector fieldand

v, define their inner product to be

(u,V>=/ UsTg + U, 7, dpt, (8)
52

wheredu = siné do dg is the invariant measure on the sphere; we denote the correspond
Hilbert space by 2 (S?).

In order to generalize the eigenvalue equations (2), we must generalize the Lapla
and angular momentum operators to act on tangential vector fields. The Laplacian of
vector fieldv = vy + v,€, can be defined using the Riemannian metric on the sphere
as the image of the Casimir operator under the action of the rotation group. In either ¢
the formula in coordinates is

AV a2 +cotol 4 1 92 1 N 2cotd dv,
= |—| — — —— = — ——— |V - —_—
902 90 sitoag?  site )" " sing ag |

N 92 + cott 9 N 1 92 1 2 coth dvy ©
—\| =— — — — Vy — — — | €.
962 30 sife a2 sirfe) ¥ sind dg S

The angular momentum operator is defined by
V= -—g+-—~ (10)

and is the infinitesimal generator for rotations aroundzais.
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The vector spherical harmonid3,,, andC,,, are defined so that they satisfy the differ-
ential equations

AAm =10 + DAm (11)
and
JAIm = MA|m. (12)

The conditions (11) and (12) are analogous to the conditions (2) for the scalar spher
harmonics, but unlike the scalar case, these equations have a two-dimensional spa
solutions for eacth andm with | > 1 and|m| <|, giving rise to two independent vector
spherical harmonic®8, andCjp,.

Following Morse and Feshbach [13], if we define

B _ 1 Yim I 1 9¥im
m= D | 00 O sing ag ¥

and
Cim=—6 X Bm

thenB,, andC, each satisfy the eigenvalue equations (11) and (12). The collection
vector fields{Bim, Cim} for 1 <1 and|m| <I| forms a complete basis of orthogonal vector
fields in the space of all tangential vector fields, with normalization constants the same
for the scalar spherical harmonics, i.e.,

7 (I + m)!
2+1(0 -’

IBimlI? = ICimlI% = |Yim|I* =

Hence any vector field on the sphere may be written as

-5

1<l,|m|<l

1
[Yim |12

[fB(, m)Bim + fC(, mCim].,

wherefB(l, m) = (v, Bjn) and f € (I, m) = (v, Cj). The map from the vector fiellto the
coefficients{ f B(I, m), f€(I, m)} is called thevector harmonic transform.

To relate the vector harmonic transform to the scalar harmonic transform, simply n
that

1 1 1 .
B = mm[2|+1[|<I—m+1>ml,m—<l 10 +m>v|1,m1e9+|mv|me¢]
and

1

1
Cim =~ sind [0 —m+DYipom— (0 +D0 + m)YI—l,m]erp:|-

{imY'me@ T2A+1
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Hence, if we define auxiliary quantitigg (I, m) andg? (I, m) by

) /1
g (I,m)—<singve,\ﬁm>, (13)
g’d.m = LY (14)
' sing ¢ M
then
B . 1 I —m+1) ,
f(l’m)_«/il(l—i—l)[ sy 9d+im
+nHd+m , .
—Tg (-1, m)—lmg‘/’(l,m)} (15)
c . 1 B i =-m+1
f (I,m)_|(|+1)[ imd’ (I, m) BT g’( + 1, m)
I+ +m)
ar1 90-1 m)} (16)

Equations (15) and (16) allow us to compute a vector harmonic transform by mean:
two scalar transforms. Once we have calculated the quangtiésm) andg#(l, m) for
| > 1 and|m| <I < N + 1 (this will be discussed in Section 3), we may use Egs. (15) ar
(16) to calculatef B(l, m) and f (I, m) for 1, |m| <| < N in an additional & N + 1) — 1)
scalar multiplications and(4N + 1)? — 1) scalar additions.

3. HARMONIC ANALYSIS OF TENSOR FIELDS

3.1. The Spin-s Harmonics

There are several different definitions of tensor spherical harmonics which have b
developed in the study of quantum mechanical angular momentum, gravitational radia
and group representations. The spiharmonics are an orthogonal basis of tensor field
that seems particularly well suited to the harmonic analysis of tensor fields, of any rank.
the sphere. These tensor fields were introduced by Gel'fand, Minlos, and Shapiro [7]
were rediscovered by Newman and Penrose [14] who named thens bpimaonics. Wu
and Yang [20, 21] later defined equivalent versions of these tensor harmonics, calling ti
monopole harmonics. Our exposition follows the construction used in [8, 14].

The first step in our construction is to introduce a set of basis vectors and tensors at «
point of the sphere apart from the poles. The figgande, are easily visualized, but are
not the most convenient fields to work with, because fields of the fganor v,e, are not
transformed onto fields of the same type under rotations. Define thediekisde_ by

1 . 1 .
e, =—(e—iey), e =—(e+iey).
'+ \/Q(ee ) ﬁ(eg )
As with the fieldsey, e,, the vector®,, e_ are orthonormal at each point of the sphere apa
from the north and south poles. However, the set of fields of the famm is invariant under
rotations and is also much better behaved at the poles; the lines generated by the ve
e, converge to unique lines at each pole. l.e., the fieldare sections of homogeneous
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subbundles of the tangent bundle, away from the poles. Given a tangent vector field
may writev=v,e; +v_e_, wherev, = %(U@ +iv,). In this notation the inner product
(8) can be rewritten as

(u,v):/ U,y +u_v_du.
&

We denote the set of vector fields of the forae., by L2(E.1).
Now construct fields of basis tensors generalizngande_. Leteg=1, and forn>1
define

en:e+®"'®e+, efn=e7®"'®e77

where the tensor produas, haven factors. There is a natural identificatien® en = €,.m

for any integers1, m, and we can use this identification to reduce the problem of findin
harmonic expansions of arbitrary tensor fields on the sphere to the problem of expanc
fields of the formf e,. A tensor field of the formf e, is called atensor field of type or a
tensor field wittspin weight {14]. Let L?(E,) denote the vector space of square integrable
tensor fields of typ@, with the inner product

<fen,gen>=/ fgdu.
7%

The definition of the tensor spherical harmonics is formally identical to the scalar h:
monics, except that the Laplacian and angular momentum operators occurring in (2)
defined for tensor fields of typeinstead of scalar fields. In coordinates, the Laplacian an
angular momentum operators on tensor fields of typee given by

92 9 1 92 2nicotd 9 n?
A(fen)z—[<+cot9+ + >f]en

362 30 ' sirf0 992 | sind ¢  sirfe
and
19
J(fen) = [.——f}en.
1 dg

Then any invariant differential operator, from tensor fields of type tensor fields of type
n, is a sum of powers of the Laplacian, and the spimarmonics are defined up to a scalar
multiple as solutions to the eigenvalue equations

AYD =10 +1YL,  and YD =mY]. 17)

To construct explicit formulae for the spmharmonics, we use invariant differential
operators between spaces of smooth tensor fields of different types. Define differer
operatordD.. from smooth tensor fields of typeto smooth tensor fields of type+ 1 by

d i

0
Di(fe) = K% + W% F ncote) f} €nt1- (18)

Newman and Penrose [14] use the notatidor D, anda for D_. We also define operators
D.ntobeD. --- D4 (n factors) forn > 0.
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Remark. Equation (18) defines differential operators acting on sections away from t
north and south pole, but the differential operators extend smoothly to the entire sph
This can be seen by looking at the actionS#(2) on the universal enveloping algebra of
sa(3). For anyp, n, the space of differential operators from tensor fields of typetensor
fields of typen + p is generated by, both as a left module over the invariant differential
operators on tensors of type+ p and as a right module over the invariant differential
operators on tensors of type A second way of constructing these generators is to proje
the covariant derivative onto subbundles of the tensor bundI&$. of

Let

In—1

Co= [J 00 +D —kik+1)).
k=0

Then, the operator®.., D, satisfy the following properties:
LEMMA 3.1.

(i) D. are rotationally invariant differential operators.
(II) DiA=AD+ and JDL=D4J;.
(i) Df=-D;=-Dx.
(iv) DiDy=A—-n(n+1and D,D}=A—(n—Dn.
(V) Il DnYIm”2 =Cy - ||Ylm||2

DerINITION 3.1. Define the monopole harmonics of typedegred, and ordemto be

1
Y|nm = ﬁDnYImQ)- (19)

We shall also call these the tensor spherical harmonics.
Equations (17) and (19) now imply that the functioffs, make up a basis fdr?(E,).

THEOREM3.1. The setof functionrj;, : In| <I, Im| <1}, defined in(19),is an orthog-
onal basis for 2(E,), satisfying(17),and such thaf| Y]}, %> = || Yim[|>. Any such basis for
L2(Ep) is uniquely determined up to phase factors.

Thus, by Theorem 3.1 any tensor field= f g, of typen has an expansion

1 n n

Inj,jmj<l 1 1M

where
f = (v Vi) = [ 1 X0 d
S

and X[, is a function onS? such thatY[}, = X[} e,. The functionf"(l, m) is called the
tensor harmonic transform of the tensor field f
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ExampLE 3.1. The spin-1 and spif—-1) harmonics are simply related to the vector
spherical harmonics of [13] through the equations

1 .
B|m - E I:Y[;-ll + |Y|ml}

1. -
C|m = _E[IY;}%—’_Y'J]

ThefieldB, Cim have the advantage of being real, at a cost of poorer invariance properti

Just as in the case of vector spherical harmonics, our definition of the tensor harmol
(Definition 3.1) is given in terms of derivatives of the scalar spherical harmonics, &
for computational purposes we may require a more explicit definition in terms of line
combinations of products of trigonometric functions and scalar harmonics, i.e., we wol
like an expression for th¥j},. To this end, define the differential operator

a i 0
B=—+—-——,
960  sinf d¢

(20)
and letBy = B, and then fon > 0, define
B,=(B—-(h—-1cotd)---(B—cotd)B

andB_, = B,. From this we see that

1
Xt = ——BnYim.
Im /_Cnl n Tim

LEMMA 3.2. With B defined as i20),
1 1

1
N v/ R
SNk '™ T (sing)+12 1

—d+md+1+n+RYi 1m— (2 + MY

(B — ncotd) [A=—m+Dd —n=KYii1m

and
1, 1 1
SNk ™ (sing)k12 +1
—(+ml+1-n+KY_1m+ @ +DmYmn].

(B +ncoth) [ —m+D(d +n—KVYiim

Consequently, we can now define tg, directly in terms of the scalar spherical har-
monics.

COROLLARY 3.1. There are constants'g , such that

I4+n 1

Xim = Z CP,p,mWYp,m,
p=l—n
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where the £, , satisfy ¢m=1¢ om =0for p#£l,¢ 0 =d', _ andthe recurrence
relation

1 (p—-m(p-2n-1) ,
JIT+1) —n(n+1) {_m(*n’p'm + 2p—1 G.p-1m
—(p+m+1(p+2+2n) ,
2p+3 CI,p-&-l.m

n+1

G.pm=

forl —n < pgl+n,n5|,andcﬂp7m=0forp<l—norp>|+n.

Proof. The firsttwo properties of thg", , are obvious. The third comes from the equa-
tion X, 1= X['_,, (which follows from the fact tha¥im = Y| _m, and henc&[, =Y, " ).
The recurrence relation comes from the identities of the previous lemma and the relati

1
XM= B — ncotd) X! .
m JI(I+1)—n(n+1)( ) Xim

In Fig. 2 we plotX}, (6, 0) for various values ofn andl. As we might expect from their
definition, their graphs are very similar to that of associated Legendre functions.

Using Corollary 3.1 we can now give an algorithm for calculating the tensor spheric
transform of typen for |n| <| < N using a single scalar spherical transform which we nee
only compute for all orderk, with 0<| < N + |n|. Starting with a tensor fieldf e,, we
compute the auxiliary quantities

n 1
g (|,m)=<wf7Ylm> (21)

for 0<| < N + |n| using a scalar spherical transform. We then use the relations

I+n

fra,m = > 'y ma"(p. m) (22)
p=l—n

to calculate the tensor harmonic transform in an additi¢2aH- 1)[(N + 1) — n?] scalar
multiplications and B[(N + 1)2 — n?] scalar additions.

Numerically speaking, the expansion of tKg s given in Corollary 3.1 may give one
pause. The[},s are expanded in terms of singular functions, some of which are not ever
L2. (This “pause” is warranted, as will be seen during our discussion of numerical result:
Section 6.) What does this result in? Bad condition numbers, unfortunately. For exam
in Eq. (22), if f =21 and|n| > 1, theng" (0, 0) = co. This infinity must cancel with another
infinity to give the correct coefficient, which is of order one. The constant function is n
band-limited in this context, but for its projection onto the band-liBivia sampling) we
should haveg" (0, 0) = O(B!"~?) or so for|n| > 2. There are two alternative approaches
that may work for largen. First, if X[}, has a recurrence in the techniques in [3, 9] can
be used. Second, K}, has a nice oscillation structure 6 the techniques in [12] can be
used.
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4. SAMPLING THEOREMS

In order to compute spherical harmonic transforms numerically, we must reduce then
least approximately, to a finite problem. This means restricting ourselves to a finite num
of Fourier coefficients and representing functions by their values at a finite number of poir
The simplest sampling theory is the band-limited theory, which explains how to reconstr
a polynomial on the sphere from its values at a finite number of points.

DEFINITION 4.1. A tensor fieldf g, of typen on S? is band-limited with band-limiB,
if £"(I, m)=0 foralll > B. The space of such tensor fields is dendtedE,), so that

Fe(En) =span{Yp, :Inl,Im < < B}.

Let F(E,) be the union ofFg (Ep) for all B > 0. In the cas@ = 0 we write Fg(Ep) = Fg =
Fs(SH) and.F = F(Ey).
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The most important property of spaces of band-limited tensors is that the product
tensor field of band-limiB; with a tensor field of band-limiB, has band-limiB; + B,. l.e.,

LEMMA 4.1.

(I) fBl(Enl) ® fBz(Enz) g fB1+Bz(En1+n2)'
(i) Fg, - Fe,(En) € Fp,+5,-

Given a complex measus®n 7, we define thé&ourier transformof s to be the function
81, m) = / Yim ds.
4

If T = fe, is acontinuous tensor field of tymeon S?, then we may form the produstT,
and the spherical transform of this product is the function

sTd,m) =/ X1 ds.
*

When the tensor field is band-limited, there are simple conditions on the megdore
ensure agreement of the low degree Fourier coefficientsasfds. T, defined agT (I, m)}
and{s.T (I, m)}, respectively.

THEOREM 4.1 (Band-limited sampling). Assume that s is a complex measure én S
such that§(l, m) = §p; for Im| <1 <2B and T is band-limited of band-limit B. Then
sT(d,m)=Td,m)for m| <I <B.

Proof. The condition orsimplies that as linear functionalsand the invariant measure
wagree onthe spad®g. Assume, then, that this condition holds and thitin 75 (E,) and
| <B.ThenY, " isin Fg(E_n), and by the lemmal ® Y, ", isin Fzg. Buts.T(, m) =
sTRY"). =

The measure appearing in Theorem 4.1 shall be calted sampling measure

The most commonly used sampling measures have support on either an equiangula
or a Gaussian grid. For the algorithms discussed in the following sections, we shall us
equiangular grid, although a Gaussian grid (with points equally spaced indirection,
and cos'(9) a root of a Legendre polynomial) is also possible. The following is a sligt
variation of the sampling theorem given in [3]. Sampling at the north pole and slight
different normalizing of the Legendre polynomials completely account for the differenc
between the expression for the weighjsand those given there [3, p. 216].

LEMMA 4.2, Lets= % JZE(—)l S8t afB)S((,J .00 Where the sample points are chosen
from the usual equiangular grid; = 7 (2j +1)/4B, ¢« = 2rk/2B, and the weights g
have a closed form expression

2 .(n(Zj—i—l) 81

1 . . T
aj = B sin 4B ) kzzg T 1SII’]((2J +l)(2k+1)ﬁ>. (23)

Thens(,m)=0 form| <1 <2B - 1.

In the case that the tensor field is not band-limited, Lemma 4.3 shows that via samp
we may still obtain an approximation to its Fourier coefficients.
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LEMMA 4.3. Assume s is a measure oA Sich thats (I, m) = &g, for |m| < | <2B.
Assume thal is a continuous tensor field of typeand letS = s.T. Then

B 1/2
d@+n| ) dd.m -, m))zl

I=In| =<l

<(B+1*1+4B+BY)sly > @+
B+1,|n|<l

1/2
> T, m)Z] :

Imi<l

where||s||; is the total variation norm of s.

For a proof of this result see [11] or [10].

5. COMPUTATIONAL HARMONIC ANALYSIS

Assumes is a finitely supported measure on the sph&ris, a continuous tensor field of
typen, andB is a positive integer. We now consider the problem of computing the Fouri
coefficientsﬁ(l, m) for |n|, |m| <| < B, given the values of at the support oé. To see
that this amounts to the computation of some finite sums; ket the support af, and for
each pointpin S, letw, be the weight associated with that poiis called thesampling
set Thus

S= prép.

peS

Then, if T = f.e,,2 we have

ST m = wy f(p)XT,.
pesS

The method we propose for this calculation reduces the problem to a number of sim|
transforms.

The first reduction is to express the transforms for vector or tensor harmonics in term:
scalar spherical harmonic transforms. We have already seen that the transform fon a ty
tensor field may be written in terms of a single larger transform for complex functions.

Having done this reduction, the scalar spherical harmonic transform may be perforn
using any of a variety of algorithms, e.g., see [1-4, 9, 12, 15, 16].

5.1. Vector and Tensor Sphericals

Once we have a method of computing a spherical harmonic transform, the vector
tensor harmonic transforms are easy. For the vector case, Egs. (13)—(16) define ho

2If Scontains either the north or the south pole, then we are forced to make a choice for the eglaetbe
poles. The definition of at the poles will then reflect that choice, ahdvill have a discontinuity there to match
that ofe,.
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express vector spherical coefficients in terms of scalar coefficients. For the tensor c
Egs. (21) and (22) are the critical ones.

The only thing which might give the reader pause is the computation of the “extra” sca
coefficients that are required to determine the highest degree vector and tensor coeffici
As is stated at the end of Section 3.1, the first step in calculating a tensor spherical trans
of typen with band-limit B is to compute

i = 1 .Y,
g(am)—<m ) Im>

for 0<I < B+ |n| using a scalar spherical transform. For nonzeydhe computation
of g"(I, m) involves scalar spherical coefficients with degrees greater than the band-lir
Therefore we are projecting signals onto associated Legendre functions with degrees gr
than the band-limit. The reason the final result makes sense is that the sampling th
needed to justify the computation only applies to the tensor fieglsWe do not need any
sampling results to justify the validity of the scalar harmonic transforms in the intermedi:
stages of our computation.

6. NUMERICAL RESULTS

In this section we present results that indicate that a tensor spherical transform of tyj
can be performed in a stable fashion for a useful range of problem sizes (i.e., bandJimit:
and ranks. For a detailed discussion of the stability and efficiency of several (non-multipc
based) scalar spherical transform algorithms, we refer the reader to [9].

Experiments were performed on a DEC Alpha 200 and a SGI Origin 2000, and all
code used was based on SpharmonicKit [17]. As noted in Section 2, the scalar sphe
transform of a functiorf (6, ¢) is equivalent to a Fourier transform on the azimuthal angls
¢ followed by an associated Legendre transform on the colatitude angjteperform the
scalar spherical transform, we used the semi-naive algorithm (as it is referred to in [
Originally developed by Dilts [2], this algorithm can compute the spherical transform
a function f in no more thanO(B2®) operations. The Dilts algorithm takes advantage o
the fact that the cosine expansion of an associated Legendre polynomial of degseat
mostl 4+ 1 nonzero terms. Although using this fact does not result in a discrete Legen
transform algorithm that is asymptotically faster than the naive algorithm, in practice
does allow for a faster algorithm which is also stable [9] for the band-limits we consid
Of course, at high enough band-limits (say greater than 1023), all algorithms based «
three-term recurrence become unstable (though they are still fast!).

We recognize that other scalar spherical transform algorithms which are asymptotic
faster than the semi-naive and naive algorithms exist. However, we still used the semi-n
algorithm in our experiments, basically for two reasons. First, as mentioned already,
semi-naive algorithm, as measured in real time, is faster than the naive algorithm. Sec
implementation of the algorithm is simple and straightforward.

There is no reason to believe that using other algorithms would significantly alter
results. We say “significantly” because each algorithm may have its stability quirks. Tl
should be kept in mind when reading our discussion of our results.

To measure the error of the tensor spherical algorithm, we employed the following p
cedure:
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1. Select a band-limiB and rankn.

2. Generate a set of random tensor spherical coefficifhtsuniformly distributed
between-1 and 1 for all legal values d¢fandm, i.e., 0< m< B, maxm, n) <| < B.

3. Synthesize the function

1
— = _fhyn
[Yimf2 ™™

Inl,Im|<I<B

4. Take the tensor spherical transform of the synthesized function, generating a 1
set of tensor spherical coefficierts,.
5. Compute the error as

max| fir, — i

6. Repeat Steps 2-5 ten times.
7. Compute the average absolute and relative errors over the ten trials.

Comments concerning the synthesis done in Step 3 will be made at the end of this sec
Also, the random coefficients were chosen so that the resulting function samples woul
strictly real. Furthermore, the “extra” Legendre coefficients were calculated using the na
Legendre transform.

In Table | we give the absolute and relative errors for tensor spherical transforms
different ranks at different band-limits.

As can be seen, the error grows worse as the band-limit and rank increase. The sc
of this poor behavior can easily be identified. Recall that in order to calculate the ten
spherical coefficients, we first compute

n . 1
ghm= <(sin9>“ § Y'”‘>disc’ &4

wheren is the rank of the transform. The subscript “disc” is to remind us that we are nc
dealing with the discrete inner product. To calculgté, m), we first divide the sampled
signal f by (sin6)"l and then take the scalar transform of that modified signal.

TABLE |
Tensor Spherical Transforms: Absolute (First Row) and Relative
(Second Row) Errors for Different Bandwidths and Ranks

Band-limit Rank=1 Rank=2 Rank=3 Rank=4

63 4.2201e-11 1.3648e-10 8.0897e-10 2.2950e-08
1.6975e-09 2.0537e-09 2.0277e-09 1.0708e-07

127 1.6589e-10 3.6605e-09 1.1327e-07 1.8494e-06
3.5884e-08 1.4627e-08 2.6641e-07 4.2597e-06

255 5.8974e-10 1.3734e-08 5.6144e-07 2.4696e-05
3.6359e-08 6.7320e-08 7.2475e-07 1.2126e-04

511 1.1066e-08 9.5600e-07 1.0351e-04 8.2838e-03

2.2581e-07 3.1972e-06 1.7710e-04 1.6041e-02
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FIG. 3. Semilog plots of ¥(sing;)" for ranksn =1, 2, and 3 at bandwidth 255.

In Fig. 3 we have plotted/tsing;)I" for different ranksh at band-limit= 255. Dividing
the sampled functiorf by (sing;)" is “blowing up” those sample values near the ends o
the interval. Consequently, accuracy deteriorates as the rank increases, and as the banc
gets larger, this deterioration simply becomes worse at an even faster rate.

Although the source of the instability cannot be entirely removed, we can easily les:
its influence, at least to some extent. To do so, we must consider the weights used ir
Legendre-transform portion of the scalar spherical transform.

By Lemma 4.2, we see that the weights can be written as a product®fsid a sum
involving sines. Therefore, we can “move” one of the singsing)!" over to the expression
for the weights and hence remove one occurrence of dividing g, sithat is, Eq. (24)
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now becomes

n B 1
glm= <(sin9)”' f’Y““>disc

1
= (s )., .

The subscript “disc-1”" in the above equation means that this discrete inner produc
computed using sampling weigtds (Eq. (23)) which have been divided by $in

In practice we have found that it is possible to mové ginver to the weights and gain
noticeable improvement of accuracy, but that moving larger powers éftsithe weights
does not seem so useful. Hence, the inner product we are evaluating is

n _ 1
g'd.m = <(sin9)"' f’Y"“>disc

1
N <(Sif19)”"2 f’Y|m>diS(rZ. 2o

In Fig. 4 we plot the original and modified weights for bandwigtl255. In order to obtain
as much accuracy as possible, all modified weights used were computed in Mathems
and then saved to disk. The C code reads in the weights as needed.

Drawing on the point we mentioned at the beginning of this section, this moving of tl
sines may be necessary because we are using the semi-naive algorithm. That is, there
be some instability issues unique to the semi-naive that we are addressing. Other &
rithms may require a slightly different treatment. However, the soundness of our appro
to performing tensor spherical transforms, expressing them in terms of scalar sphel
transforms, remains.

6.1. The Errors: A Closer Look

In Table Il we give the absolute and relative errors of the tensor transform algoritt
for different band-limits and ranks using the modified weights. Consider the errors

TABLE Il
Tensor Spherical Transforms: Average (First Row) and Relative (Second
Row) Errors for Different Band-limits and Ranks Using the Modified (by

sin? @) Weights

Bandwidth Rank=1 Rank=2 Rank=3 Rank=4
63 3.3291e-13 2.9555e-12 3.8784e-11 1.1813e-08
8.5841e-12 1.6776e-11 1.2803e-10 2.1286e-08
127 1.2511e-12 1.3358e-11 3.8273e-10 2.0495e-07
1.7027e-11 1.1262e-10 2.5266e-09 5.3624e-07
255 5.4060e-12 1.0321e-10 6.0705e-09 6.2496e-06
3.4873e-10 1.5115e-09 1.3786e-07 1.3923e-05
511 1.5202e-11 1.8197e-09 1.8829e-07 6.5342e-05

3.8921e-10 5.9895e-09 1.2767e-06 1.6236e-04
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FIG. 4. Original and “modified” weights at band-limit 255.

band-limit= 255. For ranksn =1, 2, 3, the errors seem acceptable (at least to us!), fc
n=4, less so. In order to examine the behavior of the errors more closely, we took the e
results of one iteration of the test loop and plotted the maximum absolute and relative er
ateach order mThat is, given the coefficients computed at oraercalculate the largest
absolute and relative error of these coefficients and do this for all ordera @ 255. In
Figs. 5 and 6 we show semilog plots of the errors for ordesO, ..., 50, for different
rank transforms. Note how the errors quickly decay as the order increases. As is obv
in the plots, the largest errors occur at those values of the arder which m is near the
rankn of the transform. The cause of this phenomenon can be identified using the rela
between associated Legendre functions and Gegenbauer polynomials.
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FIG. 5. Band-limit= 255, weights modified by sf®: Semilog plot of maximum absolute errors of coeffi-
cients, for ordersn=0, ..., 50, for different rank transforms.

Associated Legendre functions may be expressed in terms of Gegenbauer polynom
RAm(cosh) = Ay sin™ 6 x Ci_mm+1/2(C0OSH),

whereA, is anormalizing constant aiigj, (cosd) denotes a Gegenbauer polynomial. Note
the presence of the $iw. When the ordem is greater than the rank of the transform,
we are effectively no longer dividing by a power of 8inin other words, the higher order
associated Legendre functions “absorb” all occurrences @f S nowhere is division by
small sirp taking place.

Therefore, we conjecture that it is possible to do a still reasonably fast tensor spher
transform, for a reasonable rank at a reasonable band-limit. Extra precision is required «
for computing the low order coefficients. The majority of coefficients, for ordegseater
than the rankn, could still be computed without special extended (i.e., and possibly slo\
precision “handling.”
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FIG.6. Bandwidth= 255, weights modified by sf®: Semilog plot of maximum relative errors of coefficients,
for ordersm=0, ..., 50, for different rank transforms.

6.2. The Synthesis

In Step 3 of our procedure for measuring the error of a ratgnsor spherical algorithm,
we synthesize the function

1 n n
Inl.im|<l<B [ Yim1® m¥im:
where f;}, were randomly generated tensor spherical coefficients. By the definitiof,of
(Corollary 3.1), this involves dividing a sampled scalar spherical harm@giby (sing)"'.
From the results we have presented, we know that the principle source of error in evalua
the inner products is the division kgind)"'. By moving sirf & over to the weights, the
error is somewhat (though not greatly) reduced.
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However, since division bysing)" is part of the synthesis step, a legitimate questior
to ask is how much error is present in the sampled funatideelf, before any spherical
transforms are computed. Reporting error values obtained from the use of dubious s
pling data would not be of much value. We want to test the tensor algorithmatritie
sampling+ tensor algorithm. To accomplish this, we used Mathematica.

As a means of testing the tensor algorithm alone, we ran the following experiment. |
band-limit B =255 and rank =4, we set the tensor coefficients as follows:

n_J1 ifm>=0
fim = {O otherwise 27)

Next, we sampled in Mathematica. This sampling can be done at high precision and v
can control this precision too. The sample values generated were then written to disk al
was this data that was read into the C code and tensor-transformed. The differences bet
the errors obtained using the Mathematica data as input data and the errors produced
the C-generated input data were minimal. Therefore, the errors we are seeing are noten
due to the sampling. Those errors really do result when the tensor transform algorithr
implemented in a finite-precision fashion.

7. CONCLUSION

We have described algorithms for the numerical computation of Fourier transforms
tensor fields on the two-sphef@, These algorithms reduce the computation of an expansic
on tensor spherical harmonics to expansions in scalar spherical harmonics and henc
take advantage of improvements in the computation of scalar spherical harmonic transfo

Although the algorithms we describe are susceptible to certain numerical instabiliti
we present numerical results which indicate that minor variations of the algorithms c
produce stable results for a useful range of bandwidths and ranks.
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